
Physics Letters B 828 (2022) 137013

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of K∗(892)± production in inelastic pp collisions
at the LHC

.ALICE Collaboration �

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 May 2021
Received in revised form 27 February 2022
Accepted 9 March 2022
Available online 16 March 2022
Editor: M. Doser

The first results on K∗(892)± resonance production in inelastic pp collisions at LHC energies of 
√

s = 5.02, 
8, and 13 TeV are presented. The K∗(892)± has been reconstructed via its hadronic decay channel 
K∗(892)± → K0

S + π± with the ALICE detector. Measurements of transverse momentum distributions, 
pT-integrated yields, and mean transverse momenta for charged K∗(892) are found to be consistent 
with previous ALICE measurements for neutral K∗(892) within uncertainties. For pT > 1 GeV/c the 
K∗(892)± transverse momentum spectra become harder with increasing centre-of-mass energy from 5.02 
to 13 TeV, similar to what previously observed for charged kaons and pions. For pT < 1 GeV/c the 
K∗(892)± yield does not evolve significantly and the abundance of K∗(892)± relative to K is rather 
independent of the collision energy. The transverse momentum spectra, measured for K∗(892)± at 
midrapidity in the interval 0 < pT < 15 GeV/c, are not well described by predictions of different versions 
of PYTHIA 6, PYTHIA 8 and EPOS-LHC event generators. These generators reproduce the measured pT-
integrated K∗±/K ratios and describe well the momentum dependence for pT < 2 GeV/c.

© 2022 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Measurements of identified hadron production in high-energy 
proton-proton interactions provide key observables to character-
ize the global properties of the collisions. Particle production 
at high collider energies originates from the interplay of per-
turbative (hard) and non-perturbative (soft) Quantum Chromo-
dynamic (QCD) processes. Soft scattering processes and parton 
shower hadronization dominate the bulk of particle production at 
low transverse momenta and can only be modeled phenomenolog-
ically.

At the Large Hadron Collider (LHC) [1], the small Bjorken x
regime is probed and contributions from hard-scattering processes 
are more relevant with increasing centre-of-mass energy. This pro-
duces a hardening of the transverse momentum spectra, as already 
observed in Refs. [2,3]. Measurements of strange hadrons such as 
the K∗(892) vector meson at different collision energies allow for 
testing and tuning perturbative QCD and low-transverse momen-
tum phenomenological calculations [4–6], including strangeness 
production.

In the following, K∗0 denotes K∗(892)0 and K∗(892)0, K∗±
stands for K∗(892)+ and K∗(892)− , while K∗ indicates K∗0 and 
K∗± .

� E-mail address: alice -publications @cern .ch.

In heavy-ion collisions, due to their short lifetimes compara-
ble with the lifetime of the hadronic phase of the system [7], 
resonances such as K∗ (τ ≈ 4 fm/c) are sensitive probes of the 
dynamical evolution of the fireball. Re-scattering and regeneration 
in the hadron gas may change the number of resonances recon-
structed via the hadronic decay channels compared to those pre-
dicted by thermal models at the chemical freeze-out, i.e. when 
the inelastic interactions stop. The K∗ vector meson and its cor-
responding ground state, the K, have an identical quark content. 
They differ only in mass, lifetime and relative orientation of their 
quark spins. Therefore, the K∗/K ratio is an ideal observable to 
study the K∗ properties and the freeze-out conditions in relativis-
tic heavy-ion collisions. The integrated yield ratio K∗0/K exhibits 
a suppression with respect to pp collisions, which increases with 
the centrality of the collisions [8–11]. This could be explained as 
due to the dominance of re-scattering effects of K∗0 decay products 
over regeneration processes in the hadronic phase of the collisions.

Hints of the suppression of K∗0/K were observed also in high-
multiplicity p–Pb and pp collisions [12–14] at LHC energies, sug-
gesting the possible presence of re-scattering effects and thus 
of a hadronic phase with a short but finite lifetime in small 
collision systems. The observed multiplicity-dependent suppres-
sion should therefore be validated by measurements with an in-
creased precision. This is particularly important for small sys-
tems such as pp and p–Pb because the K∗0/K ratios, measured 
in the highest and lowest multiplicity event classes differ by 
less than 2σ [12–14], with the largest uncertainty in the ra-
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tio being relative to the K∗0 yield measurement. In this work, 
the K∗/K ratio is studied with increased precision by measur-
ing the production yield of K∗± in pp collisions with the ALICE 
detector [15]. The production of charged and neutral K∗ vec-
tor mesons is expected to be comparable. Indeed, they have 
a similar quark composition, K∗(892)+ = (us), K∗(892)0 = (ds), 
K∗(892)− = (us) and K∗(892)0 = (ds), and their masses differ by 
about 0.004 GeV/c2, being M(K∗±) = 0.89166 ± 0.0026 GeV/c2 [16]
and M(K∗0) = 0.89581 ± 0.0019 GeV/c2 [16]. At LHC energies, the 
measurement of the K∗± and K∗0 strange vector mesons is quite 
challenging. These are reconstructed via their hadronic decay into 
a charged pion and a kaon: a neutral kaon for K∗± and a charged 
kaon for K∗0. Because of the different strategies used for their 
identification in ALICE, K0

S are measured with a lower systematic 
uncertainty than charged kaons [3,13].

In this paper, transverse momentum (pT) distributions of 
K∗± resonances at midrapidity (|y| < 0.5) are presented for the 
first time for inelastic pp collisions at the LHC. The evolution of 
the pT distributions with the energy was investigated by studying 
pp collisions at the centre-of-mass energies of 

√
s = 5.02, 8, and 

13 TeV. The similarity of the charged and neutral K∗ production 
was checked by comparing K∗± results with existing K∗0 measure-
ments at the same collision energy [3,11,17]. These measurements 
are a useful probe of strangeness production and provide input 
to tune Monte Carlo event generators such as PYTHIA and EPOS-
LHC [4–6] as a function of collision energy. Furthermore, the mea-
surements in inelastic pp collisions at 

√
s = 5.02, 8, and 13 TeV 

reported in this paper serve as reference data to study nuclear ef-
fects in p–Pb and Pb–Pb collisions.

The paper is organized as follows. In Sec. 2 the ALICE experi-
mental setup is described, focusing on the detectors employed in 
the analysis presented here. Details on the event, track and particle 
identification as well as on the corrections applied to the measured 
raw yields and estimation of systematic uncertainties are discussed 
in Sec. 3. In Sec. 4, the results on the production of K∗± resonances 
are shown. These include the transverse momentum spectra, the 
mean transverse momenta, the per-event pT-integrated particle 
yields and the K∗±/K = (K∗+ + K∗−)/(K+ + K−) ratio as a func-
tion of the collision energy. All these observables are compared 
with similar results for K∗0. The comparison of the pT spectra with 
different event generator (PYTHIA6, PYTHIA8 and EPOS-LHC) pre-
dictions is also presented. In Sec. 5 results are summarized and 
conclusions are drawn.

2. Experimental setup

A detailed description of the ALICE detector and its performance 
can be found in Refs. [15,18]. The sub-detectors used for the analy-
sis presented in this paper are the Inner Tracking System (ITS) [15], 
the Time Projection Chamber (TPC) [19], and the V0 detectors [20]. 
All tracking detectors are positioned in a solenoidal magnetic field 
B = 0.5 T parallel to the LHC beam axis.

Charged particle tracks are reconstructed by the ITS and the 
TPC. The ITS is the innermost barrel detector consisting of six 
cylindrical layers of high-resolution silicon tracking detectors. The 
innermost layers consist of two arrays of hybrid Silicon Pixel De-
tectors (SPD) located at an average radial distance r of 3.9 and 
7.6 cm from the beam axis and covering |η| < 2.0 and |η| < 1.4, 
respectively. The SPD is used to reconstruct the primary vertex 
(PV) of the collisions, which is found as a space point to which the 
maximum number of tracklets (track segments defined by pairs 
of points, one point in each SPD layer) converges. The outer lay-
ers of the ITS are composed of two layers of silicon drift and 
two layers of silicon strip detectors, with the outermost layer po-
sitioned at r = 43 cm. The TPC is the main tracking device of 
ALICE. It is a large volume (90 m3) cylindrical drift chamber with 

Table 1
Number of minimum bias events after event selection (NMB), integrated 
luminosity (Lint), the trigger selection efficiency (εtrig), and the primary 
vertex reconstruction efficiency (εvertex) for the analyzed data sets. The 
uncertainty on εvertex is lower than 0.1%.

√
s (TeV) NMB (107) Lint (nb−1) εtrig εvertex

5.02 10.87 2.12 ± 0.05 0.757 ± 0.019 0.958
8.0 6.99 1.25 ± 0.03 0.772 ± 0.021 0.972
13.0 5.32 0.92 ± 0.02 0.745 ± 0.019 0.931

radial and longitudinal dimension of about 85 < r < 250 cm and 
−250 < z < 250 cm, respectively, covering for full-length tracks a 
pseudorapidity range of |η| < 0.9 over the full azimuth. The end-
caps of the TPC are equipped with multiwire proportional cham-
bers segmented radially into pad rows. Together with the measure-
ment of the drift time, the TPC provides three dimensional space 
point information, with up to 159 samples per track. The resolu-
tion on the position is 1100–800 μm on the transverse plane and 
1250–1100 μm along z. Charged tracks originating from the pri-
mary vertex can be reconstructed down to pT ≈ 0.1 GeV/c [18]. 
The TPC enables charged particle identification (PID) via the mea-
surement of the specific ionization energy loss (dE/dx) with a res-
olution of about 5.2% [18] at low transverse momentum. A separa-
tion between π -K and K-p at the level of two standard deviations 
is possible for pT < 0.8 GeV/c and 1.6 GeV/c, respectively.

The V0 detectors are two forward scintillator hodoscopes em-
ployed for triggering and beam background suppression. They are 
placed along the beam axis on each side of the nominal interaction 
point (IP) at z = 340 cm and z = −90 cm, covering the pseudo-
rapidity regions 2.8< η <5.1 (V0A) and −3.7 < η < −1.7 (V0C), 
respectively.

The pp data at 
√

s =5.02 and 13 TeV used in this paper were 
collected in 2015 while data at 

√
s =8 TeV were collected in 2012. 

The data were collected with a minimum bias trigger requiring a 
hit in both V0 detectors, in coincidence with the arrival of proton 
bunches from both beam directions.

The analyzed data are low pile-up samples in which the aver-
age number of interactions per bunch crossing are μ =0.019 ±
0.009, 0.02 ± 0.01 and 0.068 ± 0.003 for collisions at 

√
s =5.02, 8, 

and 13 TeV, respectively. Contamination from beam-gas events is 
removed offline by using timing information from the V0 detector, 
which has a time resolution better than 1 ns. The events in which 
pile-up or beam-gas interaction occurred are also rejected by ex-
ploiting the correlation between the number of SPD hits and the 
number of SPD tracklets, as discussed in detail in Ref. [18].

The events selected from the analysis are required to have a 
reconstructed primary vertex with its position along the beam axis 
being within 10 cm with respect to the nominal interaction point 
(the centre of the ALICE barrel). The events containing more than 
one reconstructed vertex are tagged as pile-up occurring within 
the same bunch crossing and discarded for the analysis.

The size of the analyzed samples after selection and the cor-
responding pp integrated luminosities are given in Table 1. In the 
same table, the primary vertex reconstruction efficiency εvertex and 
the trigger selection efficiency εtrig are also reported. For each 
energy, the εtrig value, mainly defined by the charged particle 
multiplicity of the collision, is the ratio between the V0-triggered 
cross section [21–23] and the inelastic cross section [24] and the 
εvertex is the fraction of V0-triggered events for which a primary 
vertex is reconstructed.

3. Data analysis

The K∗(892)± is a short-lived particle and its decay vertex can-
not be distinguished from the primary collision vertex. It is re-
constructed in ALICE via its main decay channel K∗±→ K0

S + π± , 
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Table 2
The selection criteria parameters for K0

S candidates. DCA 
stands for distance of closest approach, PV means primary 
vertex, θPA is the pointing angle, LmK0

S
/p is the proper 

lifetime. The competing V0 rejection window is 1.1157 ±
0.0043 GeV/c2 while for the mass of the π+π− pairs the 
window is 

∣∣∣mK0
S
− mπ+π−

∣∣∣ < 4σmK 0
S

.

K0
S selection criteria Value

Pion dE/dx (σ ) < 5
DCA of daughter to PV (cm/c) > 0.06
DCA between daughters (σ ) < 1
Cosine of θPA > 0.97
V0 radius (cm) > 0.5
Proper lifetime LmK0

S
/p (cm) < 20

Competing V0 rejection window (GeV/c2) ±0.0043
Mass K0

S window (σ ) ±4
Rapidity |y| < 0.8

which has a branching ratio (B.R.) of (33.3 ± 0.003)% [16], taking 
into account the B.R. of K∗± → K0+ π± decay and the probability 
of K0 to be into a K0

S state. The K0
S is reconstructed by exploit-

ing its characteristic weak decay topology (K0
S→ π+ + π−) into 

two oppositely charged particles (V0 topology) with branching ra-
tio (69.2 ± 0.05)% [16].

3.1. Pion and K0
S selection

Particle identification for charged pions originating from the 
primary and secondary vertices (“primary and secondary pions”) is 
applied on a sample of high-quality tracks reconstructed with the 
TPC and the ITS. Informations from ITS are required only for pri-
mary tracks. The primary and secondary tracks reconstructed with 
the TPC are required to have crossed at least 70 readout rows out 
of a maximum 159. They are also requested to avoid large gaps 
in the number of expected tracking points in the radial direction. 
This is achieved by ensuring that the number of clusters expected, 
based on the reconstructed trajectory and the measurements in 
neighboring TPC pad rows, do not differ by more than 20%. Parti-
cles are required to have pT > 0.15 GeV/c and to be located in the 
pseudorapidity range |η| < 0.8 to avoid edge effects in the TPC ac-
ceptance. Furthermore, tracks of particles possibly originating from 
weak decays of pions and kaons are rejected when a kink in the 
track is observed [18]. Primary tracks are required to be associated 
with at least one cluster in the SPD and the goodness-of-fit values 
χ2 per cluster of the track fit in the ITS and in TPC are restricted 
in order to select high-quality tracks. Primary tracks are required 
to have a distance of closest approach (DCA) to the primary ver-
tex lower than 2 cm along the beam axis and 7σ in the transverse 
plane, where σ = (0.0015+0.0050 pT

−1.1) cm with pT in units of 
GeV/c. Secondary tracks are required to have a DCA to the primary 
vertex larger than 0.06 cm. Selected pion candidates are identified 
by requiring that the specific ionization energy loss dE/dx mea-
sured in the TPC lies within n standard deviations (σT P C ) from the 
specific energy loss expected for pions, with n equal to 3 or 5 for 
primary and secondary pions, respectively.

The selection criteria used for the K0
S reconstruction are listed 

in Table 2. Candidates K0
S are in the rapidity range |y| < 0.8. 

The distance of closest approach between positively and nega-
tively charged tracks is required to be smaller than one standard 
deviation with respect to the ideal value of zero and the cosine 
of the pointing angle (θPA), which corresponds to the angle be-
tween the V0 momentum and the line connecting the secondary 
to the primary vertex, is required to be larger than 0.97. Only 
those V0 candidates located at a radial distance larger than 0.5 cm 
(V0 radius) are used in this analysis. Competing V0 rejection is 
also applied: the V0 mass is recalculated assuming that one of 

the pions is a (anti-)proton, and the V0 candidates (about 2%) 
are rejected if their mass is compatible with the 
 mass within 
± 0.0043 GeV/c2, which is about three times the typical mass res-
olution for the reconstructed 
 in ALICE [25]. In addition, K0

S can-
didates with a proper lifetime larger than 20 cm/c are rejected 
to remove combinatorial background from interactions with the 
detector material. The proper lifetime is estimated as LmK0

S
/p, 

where L is the linear (3D) distance between the primary vertex 
and the V0 decay vertex, p is the total momentum of K0

S , and 
mK0

S
= 0.497611 GeV/c2 is the nominal K0

S mass [16]. Finally, the 
invariant mass of π+π− pairs is required to be compatible with 
the nominal K0

S rest mass within ±4σmK0
S
, with the K0

S mass reso-
lution value increasing smoothly with the transverse momentum, 
from ≈ 3.5×10−3 GeV/c2 at pT ≈ 0 to ≈ 6.2×10−3 GeV/c2 at 
pT = 10 GeV/c.

ALICE has measured K∗0 exploiting its decay into K± + π∓ [3,9–
12,17,26], with pions and kaons reconstructed as primary particles 
and identified using energy loss and time-of-flight measurements. 
The crucial difference in the K∗± and K∗0 reconstruction is the 
charged and neutral kaon identification. In particular, the neutral 
kaon reconstruction efficiency is larger for pT < 0.2 GeV/c and for 
pT > 2 GeV/c. At low pT, primary charged kaon detection depends 
on the tracking efficiency with a threshold of about 0.1 GeV/c, 
whereas at high pT the larger efficiency in neutral kaon recon-
struction is mainly connected to a loose charged particle selection 
based on the expected specific energy loss.

3.2. Signal extraction

The raw yield of the K∗± is extracted from the same-event 
K0

Sπ
± invariant mass distribution in different pT intervals between 

0 and 15 GeV/c. The nominal mass value [16] is assigned to the 
K0

S when the K0
Sπ

± invariant mass is estimated. The shape of the 
uncorrelated background is estimated using the invariant mass dis-
tribution of K0

Sπ
± pairs selected from different events (event mix-

ing method). To avoid any mismatch due to different acceptances 
and to ensure a similar event structure, particles from events with 
similar vertex positions along z (�z < 1 cm) and track multi-
plicities n (�n < 5) are mixed. To reduce statistical uncertainties 
each event is mixed with 9 others. The mixed-event distribution is 
then normalized to the same-event distribution in the mass region 
1.1 < MK 0

S π
± < 1.2 GeV/c2 and subtracted from the same-event 

distribution in each pT bin. The mixed-event background normal-
ization range is varied for the study of systematic uncertainties.

The K0
Sπ

± invariant mass distributions in different pT ranges ob-
tained for the different collision energies are shown in the left 
panels of Fig. 1. Similar to previous K∗0 analyses [3,9–12,17,26]
the uncorrelated mixed-event background is subtracted from the 
same-event invariant mass distribution. The resulting distributions 
exhibit a characteristic peak on top of a residual background, as 
reported in the right panels of Fig. 1. The latter is due to the 
presence of correlated pairs from jets, multi-body decays of heav-
ier particles and misreconstructed resonance decays. The resulting 
distribution is fitted with a combination of the non-relativistic 
Breit-Wigner function to describe the signal peak and a F BG func-
tion to describe the residual background.

The fit, based on the minimization of the χ2, was performed 
according to the following expression:

dN

dMK0
Sπ

±
= C

2π

�0(
MK0

Sπ
± − M0

)2 + �2
0

4

+ F BG

(
MK0

Sπ
±
)

(1)

where M0 and �0 are the mass and the width of the K∗± [16]. The 
C parameter is the integral of the peak function from 0 to ∞. The 
detector mass resolution for the reconstruction of K∗± is negligible 
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Fig. 1. (Left panels) The K0
Sπ

± invariant mass distributions at |y| < 0.5 in pp collisions at √s = 5.02, 8, and 13 TeV. The background shape estimated by the event-mixing 
technique is shown with empty red circles. Statistical uncertainties are shown with error bars. (Right panels) The K0

Sπ
± invariant mass distributions in pp collisions at √

s = 5.02, 8, and 13 TeV after background subtraction. The solid red curve is the result of the fit with Eq. (1); the dashed red line describes the residual background 
distribution given by Eq. (2). Statistical uncertainties are shown with error bars.

compared to its natural width, �0 = (0.0508 ± 0.0009) GeV/c2 [16], 
and it is therefore not included in the peak model. The mass 
and width of K∗± were found to be compatible with the val-
ues reported in [16]. For the measurement of the yields, the 
width of K∗± was fixed to its natural value. Fits were performed 
with the width kept as a free parameter or fixed at 0.0517 or 
0.0499 GeV/c2 to estimate the systematic uncertainty.

The shape of the correlated background in the invariant mass 
distribution of K0

Sπ
± pairs is studied using the same samples of 

simulated events described in Sect. 3.3 that were used to estimate 
the Acceptance×Efficiency corrections. The produced particles and 

their decay products are propagated through the ALICE detector 
using GEANT3 [27]. Invariant mass distributions for K0

Sπ
+ and 

K0
Sπ

− pairs are accumulated after applying the same event, track 
and particle identification selections as in data. The study shows 
that after subtracting the combinatorial background, the remaining 
background has a smooth dependence on mass. It is well described 
by the following function, already used in Refs. [28,29]:

F BG

(
MK0

S
π±)

=
[

MK0
Sπ

± −
(

mπ± + mK0
S

)]n

× exp
(

a + bMK0
Sπ

± + cM2
K0

Sπ
±
)

(2)
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Fig. 2. Acceptance×Efficiency as a function of pT for K∗± mesons, detected by 
their decay to K0

S + π± , with K0
S reconstructed by their decay to π+ + π− . The 

K0
S → π+ + π−branching ratio is included in the efficiency estimation. Statistical 

uncertainties are shown with error bars.

where n, a, b, and c are fit parameters and mπ± and mK0
S

are 
the pion and K0

S masses [16]. Examples of these fits for differ-
ent pT intervals and different pp collision energies are shown 
in the right panels of Fig. 1. The typical fitting interval was 
0.66 < MK0

Sπ
± < 1.1 GeV/c2.

The K∗± raw yield (Nraw) is determined by integrating the 
combinatorial background-subtracted invariant mass distribution 
over the interval 0.79−0.99 GeV/c2, subtracting the integral of the 
residual background fit function over the same range, and cor-
recting the result to account for the yield outside that range. The 
yield in the tails is estimated by integrating the non-relativistic 
Breit-Wigner function from mπ± + mK0

S
to 0.79 GeV/c2 and from 

0.99 GeV/c2 to infinity. This correction to the total yield is about 
13%. As an alternative used to estimate the systematic uncertain-
ties, the K∗± yield is also obtained by integrating the peak fitting 
function in the allowed region (mπ± + mK0

S
,∞).

3.3. Efficiency and acceptance

To obtain the corrected resonance yields, the convolution be-
tween the geometrical acceptance (A) and the resonance recon-
struction efficiency (εrec), which takes into account the criteria 
used to select primary charged pions and K0

S , is determined. The 
A × εrec product takes into account also the branching ratio of 
K0

S → π+ + π− . For each collision energy, A × εrec is deter-
mined using samples of about 50 million pp events simulated with 
different Monte Carlo event generators (PYTHIA6-Perugia 2011 
tune [4,30], PYTHIA8-Monash 2013 tune [5,31], EPOS-LHC [6]) and 
a GEANT3-based simulation [27] of the ALICE detector response. 
The actual positions of the detectors (alignment), maps of dead or 
noisy elements, and time and amplitude calibrations are used in 
the reconstruction of real and simulated data. All the parameters 
taken into account for a careful calibration of the ALICE detector 
are listed in [18]. The residual differences between data and the 
sample of Monte Carlo simulation previously described are consid-
ered in the systematic uncertainty.

For each pT interval, the A × εrec is calculated as the ratio 
Nrec/Ngen, where Nrec is the number of particles reconstructed in 
the K0

S + π± channel after all event and particle selections, while 
Ngen is the number of generated mesons decaying in the same 
channel. Both generated and reconstructed mesons have the ra-
pidity in the range |y| < 0.5. In general, the efficiency depends 
on the shape of the generated particle pT spectrum. Therefore, at 
the different collision energies, the efficiency for K∗± is estimated 
re-weighting iteratively the shape of the generated pT spectrum 
to measured shape. As an example the transverse momentum de-

pendence of A × εrec is reported in Fig. 2 for the 
√

s = 5.02 TeV 
sample.

3.4. Yield corrections

The differential transverse momentum yield for inelastic pp col-
lisions was calculated as

1

NINEL

d2N

dpT dy
= Nraw

NMB × B.R. × �pT × �y

fSL

(A × εrec)

× εtrig × εvertex. (3)

The raw yields are corrected for the resonance branching ratio 
(B.R. = 33.3%) and A × εrec in the K0

S + π± channel. Furthermore, 
these yields were normalized to the number of minimum bias 
events NMB and corrected for the vertex reconstruction efficiency 
εvertex as well as for the trigger selection efficiency εtrig. Values of 
NMB, εvertex, and εtrig for all collision energies are reported in Ta-
ble 1. The signal-loss correction fSL takes into account the fraction 
of K∗± mesons in non-triggered inelastic events and it is esti-
mated by Monte Carlo simulations. The latter is a pT-dependent 
correction factor which has its maximum at low pT ( fSL ≈ 1.04 for 
pT < 1 GeV/c and fSL ≈ 1.01 for pT > 1 GeV/c).

3.5. Systematic uncertainties

The measurement of K∗± production in pp collisions was tested 
for systematic effects due to uncertainties in signal extraction, 
track selection criteria and particle identification for primary pi-
ons, K0

S reconstruction, global tracking efficiency for primary pions, 
primary vertex selection window, knowledge of the ALICE material 
budget and hadronic interaction cross section used in simulations 
and signal loss correction, as summarized in Table 3. The yield-
weighted mean values are quoted for three separate transverse 
momentum intervals: low (0 < pT < 1.2 GeV/c), intermediate 
(1.2 < pT < 4 GeV/c), and high-pT (4 < pT < 15 GeV/c).

The systematic uncertainties are dominated by the raw yield 
extraction, labeled as “Signal extraction” in Table 3 and amount 
to about 3–6%. This includes the sensitivity in the choice of the 
normalization interval, the fitting range, the shape of the residual 
background function, the bin counting range and the constraints 
on the resonance width imposed in the fitting procedure. In addi-
tion to the default strategy described in Sec 3.2, the combinatorial 
background was normalized in different invariant mass regions. 
The sensitivity of the K∗± yield extraction to the fit range was 
studied by varying each interval boundary by ± 0.005 GeV/c2. As 
an alternative to the function used to describe the shape of the 
residual background (Eq. (2)), a third- and a second-order poly-
nomial function was used. In this last case, the fitting range was 
restricted to the region 0.74–1.1 GeV/c2, where the background is 
reasonably approximated by a second order polynomial shape. The 
integration limits were varied by ± 0.01 GeV/c2. The sensitivity of 
the fit to the constraint on the K∗± signal width was estimated by 
using width values that take into account the current uncertainty 
on the PDG average value (0.0009 GeV/c2 [16]) or by fitting the 
signal without any constraint.

The contribution to the uncertainty related to the primary 
charged pion reconstruction, reported in Table 3, was estimated 
by varying simultaneously in the data and Monte Carlo events the 
track and the PID selections. This uncertainty ranges from 1 to 2%. 
In particular, the sensitivity of the track selection on the number 
of crossed rows, the number of reconstructed TPC space points and 
the distance of closest approach to the primary vertex was tested. 
To study the effect of PID on the signal extraction, the selection 
criteria based on the TPC energy loss were varied with respect to 
the default setting described in Sec. 3.1. PID criteria of 2.5σT P C
and 4σT P C were used.
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Table 3
Sources and yield-weighted mean values of the relative systematic uncertainties (expressed in %) on the differ-
ential yields of the K∗± resonance at the three centre-of-mass energies under study for low, intermediate and 
high-pT ranges.

√
s (TeV) 5.02 8.0 13.0

pT (GeV/c) 0–1.2 1.2–4 4–15 0–1.2 1.2–4 4–15 0–1.2 1.2–4 4–15

Signal extraction (%) 5.4 2.8 3.4 5.8 5.5 5.4 4.4 3.7 4.5
Primary pion reconstruction (%) 1.2 1.0 1.0 1.2 1.1 1.5 2.1 1.4 1.3
K0

S reconstruction (%) 0.8 0.7 1.0 2.9 0.9 0.9 2.2 1.3 1.2
Global tracking efficiency (%) 1.0 1.0 1.4 3.0 3.0 3.0 1.0 1.0 1.0
Primary vertex (%) 2.3 0.7 1.4 1.5 0.6 1.5 1.0 0.6 0.7
Material budget (%) 3.1 1.7 0.7 3.1 1.7 0.7 3.0 1.6 0.7
Hadronic interaction (%) 1.1 1.1 0.5 1.1 1.1 0.5 1.1 1.1 0.5
Signal Loss (%) 1.4 0.6 0.4 0.9 0.4 0.1 1.6 0.7 0.5

Total (%) 7.1 3.9 4.3 8.1 6.8 6.6 6.6 4.8 5.1

Systematic uncertainties due to the V0 topological and K0
S sec-

ondary track selections are reported in Table 3 under label “K0
S re-

construction”. These uncertainties were estimated by varying si-
multaneously in the data and Monte Carlo events the track and the 
PID selection criteria for the secondary tracks, and by varying all 
the topological selection criteria (DCA of decay products to PV and 
between decay products, cosine of pointing angle and V0 radius). 
The sensitivity of the measurement to the competing V0 rejection, 
the mass selection, the K0

S rapidity range and lifetime was also 
studied by varying the interval selections. Relative uncertainties in 
the range 0.7-2.9% were estimated for the three energies in all the 
pT intervals. The total systematic uncertainties associated with the 
K0

S measurement are lower than those for the charged ones [3,13]. 
In particular, by exploiting the topological identification of K0

S , the 
large uncertainties (amounting to about 6%) originating from track 
selection and the PID procedure for K± are avoided.

In ALICE, the track reconstruction proceeds from the outermost 
to the innermost radius of the TPC. To have a high-quality track 
for a particle originating from the primary vertex, the segment of 
track reconstructed in the TPC should be matched to reconstructed 
points in the ITS. This is not necessary for secondary tracks that 
originate from weak decay vertices. The differences in matching 
probabilities of TPC tracks with reconstructed points in the ITS be-
tween data and Monte Carlo simulations define the global tracking 
efficiency uncertainty. This uncertainty is in the range 1–1.4% for 
the 5.02 TeV data set, while a constant value of 1% and 3% was 
estimated for the 13 and 8 TeV data, respectively. These uncertain-
ties are correlated across pT for the inspected data sets. Variations 
in the selection window around the primary vertex position can 
modify the yield by about 0.6–2%. The uncertainty related to the 
knowledge of the ALICE material budget ranges from 3.1% to 1.7%
for pT < 4 GeV/c and is about 0.7% at higher pT. The uncertainty 
connected to the knowledge of the hadronic interaction cross sec-
tion in the detector material is about 1% for pT < 4 GeV/c. These 
effects are evaluated combining the uncertainties for a π and a K0

S , 
determined as in [3,32], according to the kinematics of the decay. 
For the signal loss correction an uncertainty of about 1.5% was es-
timated for pT < 1.2 GeV/c for 5.02 and 13 TeV collisions, while a 
slightly lower value was estimated for the 8 TeV collisions. This, for 
each pT interval, is the largest value between one half of ( fSL − 1) 
and the difference of signal-loss correction values estimated with 
different event generators.

The total systematic uncertainty is 4–8% for all the considered 
pT intervals whereas the systematic uncertainties assigned to the 
K∗0 measurements performed to date range from 9% to 18% de-
pending on energy and pT [3,11,17]. This confirms that the sys-
tematic uncertainty on the K∗/K ratio can be reduced by studying 
the charged resonant state.

Fig. 3. The pT spectra of K∗± in inelastic pp collisions at √s = 5.02, 8, and 13 TeV 
(full symbols) are compared to the pT spectra of K∗0 mesons (open symbols) at 
the same energies [3,11,17]. Statistical and systematic uncertainties are reported as 
error bars and boxes, respectively. The normalization uncertainties (2.51%, 2.72%, 
and 2.55% for 5.02, 8, and 13 TeV, respectively, see Table 1) are indicated as col-
ored boxes and are not included in the point-to-point uncertainties. The ratio of 
each measured pT distribution for K∗± mesons at √s = 5.02 (red points), 8 (blue 
points) and 13 TeV (black points) to the K∗0 spectrum at the same collision energy 
is reported in the bottom panels. The systematic uncertainty due to global tracking, 
material budget and hadronic interaction cross section of primary pions are equal 
for charged and neutral K∗ , thus they cancel out in the propagation of the uncer-
tainty to the final ratio.

4. Results and discussion

4.1. Energy dependence of pT spectra and model comparison

The first measurement of K∗± meson production in inelastic pp 
collisions at 

√
s = 5.02, 8, and 13 TeV up to pT = 15 GeV/c is pre-

sented in Fig. 3. The pT-differential yields of K∗± are compared 
to those previously measured for K∗0 in the same collision sys-
tems [3,11,17]. The spectra of the charged and neutral mesons are 
consistent within the uncertainties, as expected considering the 
similarity of their quark content and mass.

A comparison between the measured pT spectra and predic-
tions based on QCD-inspired event generators such as PYTHIA6 [4], 
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Fig. 4. The K∗± pT spectra (black dots) measured in inelastic pp collisions at (a)
√

s = 5.02 TeV, (b) 8 TeV, and (c) 13 TeV are compared to the distributions predicted by 
PYTHIA8-Monash 2013 [31] (blue lines), PYTHIA6-Perugia 2011 [30] (red lines), and EPOS-LHC [6] (black lines). Statistical and systematic uncertainties are shown with error 
bars and empty boxes, respectively. The ratios of the rebinned predictions to the measured distributions are reported in the bottom panels. The shaded bands represent the 
fractional uncertainties of the data points.

PYTHIA8 [5] and EPOS-LHC [6] provides useful information on the 
hadron production mechanisms.

Event generators such as PYTHIA combine a perturbative for-
malism of hard processes with a non-perturbative description of 
hadronization that is simulated using the Lund string fragmenta-
tion model [38]. In the PYTHIA tunes considered here, multiple 
parton-parton interactions in the same event and the color recon-
nection mechanism are taken into account. These effects are im-
portant in hadron-hadron interactions at the high LHC energies. In 
particular, color string formation between final-state partons may 
mimic effects similar to those induced by collective flow in heavy-
ion collisions [39].

The PYTHIA6-Perugia 2011 tune takes into account some of 
the lessons learnt from the early LHC data from inelastic pp col-
lisions at 0.9 and 7 TeV. For instance, it takes into account the 
observed increase in baryon production in the strangeness sec-
tor by tuning the 
/K ratio on the ALICE [40,41] and CMS [42]
data. On the other hand, the K∗0/K ratio is tuned on the LEP mea-
surements [30]. Monash 2013 is an updated set of parameters for 
the PYTHIA8 event generator, with particular attention to heavy-
quark fragmentation and strangeness production. For all studied 
LHC collision energies the PYTHIA predictions overestimate by a 
factor of 1.5–2 the K∗0 production at transverse momenta below 
0.5 GeV/c and underestimate its production by about 10-20% at 
pT > 1 GeV/c [3,17,26].

The EPOS-LHC event generator differs significantly from PYTHIA 
in its modeling of both the hadronization and the underlying 
event. It is a microscopic model that relies on parton-based 
Gribov-Regge theory with an improved flow parameterization 
which takes into account the case of a very dense system in a 

small volume. This high density core is produced by the overlap of 
string segments due to multiple parton interactions in pp or multi-
ple nucleon interactions dominating in nucleus–nucleus collisions. 
EPOS-LHC reproduces the increased baryon-to-meson ratios at in-
termediate pT as a consequence of radial flow in high-multiplicity 
pp events [13]. Both PYTHIA8 and EPOS-LHC are tuned to re-
produce the charged particle multiplicity and the production of 
identified hadrons (such as π , K, p, 
, −) measured in pp colli-
sions at 

√
s = 7 TeV [6].

Fig. 4 shows the comparison of the measured K∗± pT spec-
tra at 

√
s = 5.02, 8, and 13 TeV with the PYTHIA6 (Perugia 2011 

tune) [30] and the PYTHIA8 (Monash 2013 tune) generators [31], 
and EPOS-LHC [6]. The bottom panels show the ratios of the model 
predictions to the measured distributions for K∗± mesons. The 
agreement with data improves with the collision energy. The best 
agreement is reached with PYTHIA6-Perugia 2011 and PYTHIA8-
Monash 2013 for 13 TeV collisions. None of the models considered 
for comparison is able to fully reproduce the data. For all three en-
ergies the models overestimate by a factor of 1.5–2 the yield for 
pT < 0.5 GeV/c and underestimate it in the intermediate pT re-
gion. EPOS-LHC predictions largely overestimate the data in the 
high-pT region, whereas an agreement within the uncertainties is 
observed for PYTHIA6 and also for PYTHIA8 at 

√
s = 13 TeV. 

Agreement is also observed with PYTHIA6 for pT > 4 GeV/c at √
s = 8 TeV. These results complement the observation reported 

in Ref. [3] confirming that a more accurate tuning of the mod-
els is needed to reproduce the phase-space distribution of strange 
hadrons.

An evolution of the transverse momentum spectra with the col-
lision energy is clearly observed in the left panel of Fig. 5, where 
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Fig. 5. (Left panel) Ratios of transverse momentum spectra of K∗± in inelastic pp events at √s = 8 and 13 TeV to corresponding spectra at 5.02 TeV. Statistical and systematic 
uncertainties are shown with error bars and empty boxes, respectively. The normalization uncertainties are shown as colored boxes around 1 and they are not included in 
the point-to-point uncertainties. Blue and red histograms represent the predictions for the same ratios from PYTHIA6 Perugia 2011, PYTHIA8 Monash 2013, and EPOS-LHC. 
(Right panel) Ratios of transverse momentum spectra of K∗± , K+ + K− and π+ + π− in inelastic pp events at √s = 13 TeV [3] to corresponding spectra at 5.02 TeV [33]. 
Statistical and systematic uncertainties are shown with error bars and empty boxes, respectively.

the ratios of the K∗± transverse-momentum spectra at 
√

s = 8 
and 13 TeV to the one at 

√
s = 5.02 TeV are reported. The sys-

tematic uncertainties associated with the estimate of the material 
budget of the ALICE detector and the hadronic interaction cross 
section used in the simulations are the same for the different col-
lision energies. Hence, they cancel out in the propagation of the 
uncertainties to the ratio. For pT > 1 GeV/c, a hardening of the 
K∗± pT spectrum is observed from 5.02 to 13 TeV, which is indica-
tive of an increasing contribution of hard scattering processes in 
particle production with the collision energy. In the right panel of 
Fig. 5 the ratios of the K+ + K−and π+ + π− pT distributions at √

s = 13 TeV [3] to the ones at 
√

s = 5.02 TeV [33] are compared 
to the same ratio for K∗± . Distributions of these ratios are similar 
for the different particle species as shown in ref. [3] for ratios of 
pT distributions at 

√
s = 13 TeV to the one at 

√
s = 7 TeV. These 

distributions, like the ones for K∗± , show a progressive and sig-
nificant evolution of the spectral shape at high pT with increasing 
collision energy and the shape independent of pT within uncer-
tainties in the soft regime, pT < 1 GeV/c.

In the left panel of Fig. 5 the ratios of the K∗± transverse-
momentum spectra at 

√
s = 8 and 13 TeV to the one at √

s = 5.02 TeV predicted by PYTHIA6, PYTHIA8 and EPOS-LHC are 
also shown. PYTHIA6 and PYTHIA8 predict a larger hardening with 
the energy, while EPOS-LHC is consistent with data.

4.2. Energy dependence of dN/dy, 〈pT〉 and K∗±/K ratio

The measurements of particle production and particle ratios 
in pp collisions are important, also as a baseline for comparison 
with heavy-ion reactions. The per-event pT-integrated K∗± yields 
(corresponding to 1/NINEL× dN/dy, hereby denoted as dN/dy for 
brevity) for inelastic collisions and the mean transverse momenta 
〈pT〉 are determined by integrating and averaging the transverse 
momentum spectra over the measured range and are listed in 
Table 4. For per-event pT-integrated yields and 〈pT〉 statistical un-
certainties are estimated varying the data randomly inside the es-
timated uncertainties of each bin. The systematic uncertainties are 
computed assuming a full correlation across pT. The uncertainty 
on dN/dy is estimated from the highest and lowest spectra al-
lowed by the bin-by-bin systematic uncertainties whereas in the 
case of the 〈pT〉 the allowed hardest and the softer pT distribution 
are considered.

Fig. 6. Particle ratios K∗±/K and K∗0/K, depicted as K∗/K, in pp [3,8–11,17,26,33–35], 
central d–Au [36], central p–Pb [12] and central A–A [8–10,35,37] collisions as a 
function of √sNN. For the d–Au data, the numerator yield is derived from a combi-
nation of K∗0 and K∗± states. Bars represent the statistical uncertainties and boxes 
represent the systematic uncertainties. The points for K∗0 for d–Au, Cu–Cu and p–Pb
collisions and for K∗± for pp collisions have been shifted horizontally for visibility. 
Red, blue and black lines represent the K∗±/K ratio predicted with PYTHIA6-Perugia 
2011 [30], PYTHIA8-Monash 2013 [31] and EPOS-LHC [6], respectively.

The per-event pT-integrated yield of the K∗± in inelastic pp col-
lisions increases from 

√
s = 5.02 TeV to 13 TeV by 13.5 ± 1.2%. 

The hardening of the K∗± transverse momentum spectra reported 
in Fig. 5 manifests itself in the increasing mean transverse mo-
mentum. In pp collisions, the measured 〈pT〉 at 

√
s = 13 TeV is 

11.1 ± 0.3% larger than at 
√

s = 5.02 TeV. Similar increasing trend 
of per-event pT-integrated yields and mean pT are observed for 
K∗0 across the same collisions energies [3,11,17].

Using the K∗± yields presented in this paper and the long-lived 
K± production measured by ALICE at the same pp collision ener-
gies [3,17,33], the values of the K∗±/K ratio were estimated and 
reported in Table 4. The value of dN/dy for (K++K−) in pp col-
lisions at 

√
s = 8 TeV was estimated by fitting the data points 

at 
√

s = 0.9, 2.76 and 7 TeV [17] with the polynomial function 
A(

√
s)n + B , where A, n and B are the fit parameters and by ex-

trapolating the value for 
√

s = 8 TeV. Due to the fact that the same 
data samples were analyzed to extract both resonance and kaon 
yields, the uncertainties due to the absolute normalization cancel 
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Table 4
The per-event pT-integrated (K∗+ + K∗−)/2 yield for inelastic events in the interval 
0 < pT < 15 GeV/c at midrapidity, dN/dy, the mean transverse momentum, 〈pT〉, 
and K∗±/K for inelastic pp collisions at √s = 5.02, 8 and 13 TeV. The kaon yield is 
(K+ + K−)/2 [3,17,33]. The first uncertainty is statistical and the second one is the 
systematic uncertainty. The systematic uncertainty on dN/dy due to the normalization 
to inelastic collisions (2.51%, 2.72% and 2.55% for 5.02, 8, and 13 TeV, respectively) is 
not included.

√
s (TeV) dN/dy 〈pT〉 (GeV/c) K∗±/K

5.02 0.095 ± 0.001 ± 0.006 1.04 ± 0.01 ± 0.02 0.35 ± 0.01 ± 0.02
8 0.106 ± 0.002 ± 0.008 1.08 ± 0.02 ± 0.02 0.34 ± 0.01 ± 0.03
13 0.108 ± 0.002 ± 0.007 1.15 ± 0.02 ± 0.02 0.35 ± 0.01 ± 0.03

Fig. 7. (Upper panel) The pT spectra of K∗± in inelastic pp collisions at √s = 5.02 and 13 TeV (full symbols) are compared to the pT spectra of K± mesons (open symbols) 
at the same energies [3,33]. Statistical and systematic uncertainties are reported as error bars and boxes, respectively. Red, blue and black lines represent the K spectra 
predicted with PYTHIA6-Perugia 2011 [30], PYTHIA8-Monash 2013 [31] and EPOS-LHC [6], respectively. (Middle panels) The ratios of the rebinned predictions to the measured 
pT distributions for K± are reported in the two middle panels. The shaded bands represent the fractional uncertainties of the data points. (Bottom panels) The ratio of each 
measured pT distribution for K∗± mesons at √s = 5.02 (red points) and 13 TeV (black points) to the K spectrum at the same collision energy is reported in the bottom 
panels. Red, blue and black lines represent the K∗±/K ratio predicted with PYTHIA6-Perugia 2011 [30], PYTHIA8-Monash 2013 [31] and EPOS-LHC [6], respectively.

and therefore they are not included in the systematic uncertain-
ties of these ratios. Consistent values are obtained for the ratio at 
the three collision energies. These ratios are presented in Fig. 6 to-
gether with the results obtained for K∗0/K in different collisions 
at RHIC [8,35,36] and LHC [3,9–12,17,26,33,34,37] energies. The 
K∗±/K ratios predicted by PYTHIA6-Perugia 2011 [30], PYTHIA8-
Monash 2013 [31] and EPOS-LHC [6] at 5.02, 8 and 13 TeV are 
reported in Fig. 6 with dashed lines. The predicted ratios do not 
change varying the collision energy and are in agreement with the 

measured values within uncertainties. In pp, p–A and d–A col-
lisions at RHIC and the LHC, the K∗/K ratio do not exhibit a 
strong dependence on the colliding system size or the centre-of-
mass energy. A lower value is reported for K∗0/K ratio in central 
A–A collisions both at RHIC and LHC energies. The observed sup-
pression of the K∗0/K ratio is currently understood as the result 
of re-scattering and regeneration effects in the hadronic phase 
of heavy-ion collisions, with the former dominating over the lat-
ter [9–11].
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In the upper panel of Fig. 7 the K∗± and K± [3,33] pT spectra at √
s = 5.02 and 13 TeV are compared. At both energies the K± and 

the K∗± spectra exhibit the same slopes and consistent yields for 
pT > 3 GeV/c. For pT < 2 GeV/c a larger yield for K± is mea-
sured with respect to K∗± . In the same figure the K± pT spectra 
are compared with the PYTHIA6 (Perugia 2011 tune) [30], PYTHIA8 
(Monash 2013 tune) [31] and EPOS-LHC [6] generators. The ra-
tios of the rebinned predictions to the measured pT distributions 
for K± are reported in the two middle panels. Likewise K∗± , for 
K± the agreement with data improves at higher collision energies. 
The best agreement is reached for 13 TeV collisions. For both en-
ergies PYTHIA8 and EPOS-LHC overestimate by a factor of 1.3–1.4 
the K yield for pT < 0.5 GeV/c while PYTHIA6-Perugia 2011 repro-
duces or slightly underestimates the spectra in the same region. At 
5.02 TeV all the models underestimate the spectra in the 1 < pT <

6 GeV/c region. For pT larger than 5 GeV/c PYTHIA6-Perugia2011 
model at 13 TeV is not able to reproduce the K data by a factor 1.2.

The pT dependence of the K∗±/K ratios for pp collisions at √
s = 5.02 and 13 TeV is shown in the bottom panels of Fig. 7. 

These ratios increase at low pT and saturate for pT > 3.0 GeV/c. 
The K∗±/K ratios predicted by PYTHIA6, PYTHIA8 and EPOS-LHC 
are also shown for comparison. While PYTHIA6 and PYTHIA8 
slightly underestimate the ratios for pT larger than 2 GeV/c, EPOS-
LHC predictions largely overestimate the data in the high-pT re-
gion. All the generators describe rather well the distributions at 
low transverse momentum.

5. Summary

The first measurements of the K∗± resonance in inelastic pp 
collisions at different (5.02, 8, and 13 TeV) LHC energies were 
presented. The transverse momentum spectra were measured at 
midrapidity in the range 0 < pT < 15 GeV/c and pT-integrated 
yields as well as 〈pT〉 were calculated. These measurements com-
plement and confirm the previous results for K∗0 although with 
smaller systematic uncertainties.

The ratios of the K∗± pT distributions at 
√

s = 8 TeV and 13 TeV 
to those at 5.02 TeV reveal a hardening of the spectra with increas-
ing collision energy for pT > 1 GeV/c. An increase in 〈pT〉 by about 
11% is observed going from 

√
s = 5.02 to 13 TeV. This is consistent 

with the expectation that the contribution of hard processes to 
particle production increases with the collision energy. The weak 
energy dependence of the spectra below 1 GeV/c is consistent with 
the relatively small increase of the yields, since the pT-integrated 
yields are dominated by the low-pT part of the spectrum. A similar 
evolution of the ratios of the pT distributions at 

√
s = 13 TeV to 

the one at 
√

s = 5.02 TeV is observed for K+ + K− and π+ + π− . 
This confirms the independence of the evolution of the spectral 
shape from particle species as observed in [3].

At 
√

s = 5.02 and 13 TeV the K± and the K∗± spectra exhibit the 
same slopes and consistent yields for pT > 3 GeV/c. This indicates 
that production mechanisms as gluon fragmentation should have 
the same importance in the generation of ground and excitated 
status of K. Moreover the K∗±/K pT-integrated yield ratios for the 
three reported energies are equal within uncertainties. This con-
firms, with a smaller uncertainty, the independence of K∗/K ratio 
in pp collisions at LHC energies and the weak dependence on the 
colliding system size or the centre-of-mass energy in pp, p–A and 
d–A collisions at RHIC and the LHC.

Predictions of QCD-inspired (PYTHIA6, PYTHIA8) and hybrid 
(EPOS-LHC) event generators are not able to fully describe the 
K∗± transverse momentum spectra. The ability of the models to 
both qualitatively and quantitatively describe the data improves 
with the collision energy. The best agreement is obtained with 
PYTHIA6-Perugia 2011 and PYTHIA8-Monash 2013 for 13 TeV. 
However, EPOS-LHC better reproduces the relative hardening of 

the pT spectrum with increasing collision energy. The K∗±/K ra-
tio predicted from the event generators are in agreement with the 
measured ones and, like in data, are independent from the collision 
energy. All the generators describe reasonably well the K∗±/K ratio 
measured at low pT while they fail for pT larger than 2 GeV/c.
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